
PYTHON MO OPTIMISATION LIBRARY (PYMOO)

Ms D S CH S HARINI, Associate Professor, kschsharini1225@gmail.com, Rishi UBR Women's College,

Kukatpally, Hyderabad 500085

ABSTRACT Python has become the

programming language of choice for

research and industry projects related to

data science, machine learning, and deep

learning. Since optimization is an inherent

part of these research fields, more

optimization related frameworks have

arisen in the past few years. Only a few of

them support optimization of multiple

conflicting objectives at a time, but do not

provide comprehensive tools for a

complete multi-objective optimization

task. To address this issue, we have

developed pymoo, a multiobjective

optimization framework in Python. We

provide a guide to getting started with our

framework by demonstrating the

implementation of an exemplary

constrained multi-objective optimization

scenario. Moreover, we give a high-level

overview of the architecture of pymoo to

show its capabilities followed by an

explanation of each module and its

corresponding sub-modules. The

implementations in our framework are

customizable and algorithms can be

modified/extended by supplying custom

operators. Moreover, a variety of single,

multi- and many-objective test problems

are provided and gradients can be retrieved

by automatic differentiation out of the box.

Also, pymoo addresses practical needs,

such as the parallelization of function

evaluations, methods to visualize low and

high-dimensional spaces, and tools for

multi-criteria decision making. For more

information about pymoo, readers are

encouraged to visit: https://pymoo.org.

I. INTRODUCTION

Optimization plays an essential role in

many scientific areas, such as engineering,

data analytics, and deep learning. These

fields are fast-growing and their concepts

are employed for various purposes, for

instance gaining insights from a large data

sets or fitting accurate prediction models.

Whenever an algorithm has to handle a

significantly large amount of data, an

efficient implementation in a suitable

programming language is important.

Python [1] has become the programming

language of choice for the above

mentioned research areas over the last few

years, not only because it is easy to use but

also good community support exists.

Python is a high-level, cross-platform, and

interpreted programming language that

focuses on code readability. A large

number of high-quality libraries are

available and support for any kind of

scientific computation is ensured. These

characteristics make Python an appropriate

tool for many research and industry

projects where the investigations can be

rather complex.

A fundamental principle of research is to

ensure reproducibility of studies and to

provide access to materials used in the

research, whenever possible. In computer

science, this translates to a sketch of an

algorithm and the implementation itself.

However, the implementation of

optimization algorithms can be challenging

and specifically benchmarking is time-

consuming. Having access to either a good

collection of different source codes or a

comprehensive library is time-saving and

avoids an error-prone implementation from

scratch.

II. RELATED WORKS

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol23 Issue 8,2023

ISSN No: 2250-3676 www.ijesat.com Page 205

mailto:kschsharini1225@gmail.com
https://pymoo.org/

In the last decades, various optimization

frameworks in diverse programming

languages were developed. However, some

of them only partially cover multi-

objective optimization. In general, the

choice of a suitable framework for an

optimization task is a multi-objective

problem itself. Moreover, some criteria are

rather subjective, for instance, the usability

and extendibility of a framework and,

therefore, the assessment regarding criteria

as well as the decision making process

differ from user to user. For example, one

might have decided on a programming

language first, either because of personal

preference or a project constraint, and then

search for a suitable framework. One

might give more importance to the overall

features of a framework, for example

parallelization or visualization, over the

programming language itself. An overview

of some existing multi-objective

optimization frameworks in Python is

listed in Table 1, each of which is

described in the following.

Recently, the well-known multi-objective

optimization framework jMetal [5]

developed in Java [6] has been ported to a

Python version, namely jMetalPy [7]. The

authors aim to further extend it and to

make use of the full feature set of Python,

for instance, data analysis and data

visualization. In addition to traditional

optimization algorithms, jMetalPy also

offers methods for dynamic optimization.

Moreover, the post analysis of

performance metrics of an experiment with

several independent runs is automated.

III. GETTING STARTED

In the following, we provide a starter’s

guide for pymoo. It covers the most

important steps in an optimization scenario

starting with the installation of the

framework, defining an optimization

problem, and the optimization procedure

itself.

A. INSTALLATION

Our framework pymoo is available on

PyPI [17] which is a central repository to

make Python software package easily

accessible. The framework can be installed

by using the package manager:

Some components are available in Python

and additionally in Cython [18]. Cython

allows developers to annotate existing

Python code which is translated to C or

C++ programming languages. The

translated files are compiled to a binary

executable and can be used to speed up

computations. During the installation of

pymoo, attempts are made for compilation,

however, if unsuccessful due to the lack of

a suitable compiler or other reasons, the

pure Python version is installed. We would

like to emphasize that the compilation is

optional and all features are available

without it. More detail about the

compilation and troubleshooting can be

found in our installation guide online.

B. PROBLEM DEFINITION

In general, multi-objective optimization

has several objective functions with

subject to inequality and equality

constraints to optimize [19]. The goal is to

find a set of solutions (variable vectors)

that satisfy all constraints and are as good

as possible regarding all its objectives

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol23 Issue 8,2023

ISSN No: 2250-3676 www.ijesat.com Page 206

values. The problem definition in its

general form is given by:

The formulation above defines a multi-

objective optimization problem with N

variables, M objectives, J inequality, and K

equality constraints. Moreover, for each

variable xi , lower and upper variable

boundaries (x L i and x U i) are also

defined.

Finally, the optimization problem to be

optimized using pymoo is defined by:

Next, the derived problem formulation is

implemented in Python. Each optimization

problem in pymoo has to inherit from the

Problem class. First, by calling the super()

function the problem properties such as the

number of variables (n_var), objectives

(n_obj) and constraints (n_constr) are

initialized. Furthermore, lower (xl) and

upper variables boundaries (xu) are

supplied as a NumPy array. Additionally,

the evaluation function _evaluate needs to

be overwritten from the superclass. The

method takes a two-dimensional NumPy

array x with n rows and m columns as an

input. Each row represents an individual

and each column an optimization variable.

After doing the necessary calculations, the

objective values are added to the

dictionary out with the key F and the

constraints with key G.

As mentioned above, pymoo utilizes

NumPy [20] for most of its computations.

To be able to retrieve gradients through

automatic differentiation we are using a

wrapper around NumPy called Autograd

[22]. Note that this is not obligatory for a

problem definition.

C. ALGORITHM INITIALIZATION

Next, we need to initialize a method to

optimize the problem. In pymoo, an

algorithm object needs to be created for

optimization. For each of the algorithms an

API documentation is available and

through supplying different parameters,

algorithms can be customized in a plug-

and-play manner. In general, the choice of

a suitable algorithm for optimization

problems is a challenge itself. Whenever

problem characteristics are known

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol23 Issue 8,2023

ISSN No: 2250-3676 www.ijesat.com Page 207

beforehand we recommended using those

ugh customized operators. However, in our

case the optimization problem is rather

simple, but the aspect of having two

objectives and two constraints should be

considered. For this reason, we decided to

use NSGA-II [12] with its default

configuration with minor modifications.

We chose a population size of 40, but

instead of generating the same number of

offsprings, we create only 10 in each

generation. This is a steady-state variant of

NSGA-II and it is likely to improve the

convergence property for rather simple

optimization problems without much

difficulties, such as the existence of local

Pareto-fronts. Moreover, we enable a

duplicate check which makes sure that the

mating produces offsprings which are

different with respect to themselves and

also from the existing population regarding

their variable vectors. To illustrate the

customization aspect, we listed the other

unmodified default operators in the code-

snippet below. The constructor of NSGA2

is called with the supplied parameters and

returns an initialized algorithm object.

D. OPTIMIZATION

Next, we use the initialized algorithm

object to optimize the defined problem.

Therefore, the minimize function with both

instances problem and algorithm as

parameters is called. Moreover, we supply

the termination criterion of running the

algorithm for 40 generations which will

result in 40 + 40 × 10 = 440 function

evaluations. In addition, we define a

random seed to ensure reproducibility and

enable the verbose flag to see printouts for

each generation.

IV. ARCHITECTURE

Software architecture is fundamentally

important to keep source code organized.

On the one hand, it helps developers and

users to get an overview of existing

classes, and on theother hand, it allows

flexibility and extendibility by adding new

modules. Figure 3 visualizes the

architecture of pymoo. The first level of

abstraction consists of the optimization

problems, algorithms and analytics. Each

of the modules can be categorized into

more detail and consists of multiple

submodules.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol23 Issue 8,2023

ISSN No: 2250-3676 www.ijesat.com Page 208

V. PROBLEMS

A. IMPLEMENTATIONS

In our framework, we categorize test

problems regarding the number of

objectives: single-objective (1 objective),

multi-objective (2 or 3 objectives) and

many-objective (more than 3 objectives).

Test problems implemented in pymoo are

listed in Table 2. For each problem the

number of variables, objectives, and

constraints are indicated. If the test

problem is scalable to any of the

parameters, we label the problem with (s).

If the problem is scalable, but a default

number was original proposed we indicate

that with surrounding brackets. In case the

category does not apply, for example

because we refer to a test problem family

with several functions, we use (·).

B. GRADIENTS

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol23 Issue 8,2023

ISSN No: 2250-3676 www.ijesat.com Page 209

It can easily be verified that the values are

matching with the analytic gradient

derivation. The gradients for the constraint

functions can be calculated accordingly by

adding “dG” to the return_value_of list.

C. PARALLELIZATION

If evaluation functions are computationally

expensive, a serialized evaluation of a set

of solutions can become the bottleneck of

the overall optimization procedure. For

this reason, parallelization is desired for an

use of existing computational resources

more efficiently and distribute long-

running calculations. In pymoo, the

evaluation function receives a set of

solutions if the algorithm is utilizing a

population. This empowers the user to

implement any kind of parallelization as

long as the objective values for all

solutions are written as an output when the

evaluation function terminates. In our

framework, a couple of possibilities to

implement parallelization exist:

VI. OPTIMIZATION MODULE

The optimization module provides

different kinds of sub-modules to be used

in algorithms. Some of them are more of a

generic nature, such as decomposition and

termination criterion, and others are more

related to evolutionary computing. By

assembling those modules together

algorithms are built.

A. ALGORITHMS

Available algorithm implementations in

pymoo are listed in Table 3. Compared to

other optimization frameworks the list of

algorithms may look rather short,

however,each algorithm is customizable

and variants can be initialized with

different parameters. For instance, a

Steady-State NSGA-II [27] can be

initialized by setting the number of

offspring to 1. This can be achieved by

supplying this as a parameter in the

initialization method as shown in Section

III. Moreover, it is worth mentioning that

many-objective algorithms, such as

NSGA-III or MOEAD, require reference

directions to be provided. The reference

directions are commonly desired to be

uniform or to have a bias towards a region

of interest. Our framework offers an

implementation of the Das and Dennis

method [28] for a fixed number of points

(fixed with respect to a parameter often

referred to as partition number) and a

recently proposed Riesz-Energy based

method which creates a well-spaced point

set for an arbitrary number of points and is

capable of introducing a bias towards

preferred regions in the objective space

[29].

B. OPERATORS

The following evolutionary operators are

available:

 (ii) Crossover: A variety of crossover

operators for different type of variables are

implemented. In Figure 4 some of them are

presented. Figures 4a to 4d help to

visualize the information exchange in a

crossover with two parents being involved.

Each row represents an offspring and each

column a variable. The corresponding

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol23 Issue 8,2023

ISSN No: 2250-3676 www.ijesat.com Page 210

boxes indicate whether the values of the

offspring are inherited from the first or

from the second parent. For one and two-

point crossovers it can be observed that

either one or two cuts in the variable

sequence exist. Contrarily, the Uniform

Crossover (UX) does not have any clear

pattern, because each variable is chosen

randomly either from the first or from the

second parent. For the Half Uniform

Crossover (HUX) half of the variables,

whichare different, are exchanged. For the

purpose of illustration, we have created

two parents that have different values in 10

different positions. For real variables,

Simulated Binary Crossover [42] is known

to be an efficient crossover. It mimics the

crossover of binary encoded variables. In

Figure 4e the probability distribution when

the parents x1 = 0.2 and x2 = 0.8 where xi ∈ [0, 1] with η = 0.8 are recombined is
shown.

C. TERMINATION CRITERION

For every algorithm it must be determined

when it should terminate a run. This can be

simply based on a predefined number of

function evaluations, iterations, or a more

advanced criterion, such as the change of a

performance metric over time. For

example, we have implemented a

termination criterion based on the variable

and objective space difference between

generations. To make the termination

criterion more robust the last k generations

are considered. The largest movement

from a solution to its closest neighbour is

tracked across generation and whenever it

is below a certain threshold, the algorithm

is considered to have converged.

Analogously, the movement in the

objective space can also be used. In the

objective space, however, normalization is

more challenging and has to be addressed

carefully.

VII. ANALYTICS

A. PERFORMANCE INDICATORS

GD+/IGD+: A variation of GD and IGD

has been proposed in [53]. The Euclidean

distance is replaced by a distance measure

that takes the dominance relation into

account. The authors show that IGD+ is

weakly Pareto compliant.

VIII. CONCLUDING REMARKS

This paper has introduced pymoo, a multi-

objective optimization framework in

Python. We have walked through our

framework beginning with the installation

up to the optimization of a constrained bi-

objective optimization problem. Moreover,

we have presented the overall architecture

of the framework consisting of three core

modules: Problems, Optimization, and

Analytics. Each module has been

described in depth and illustrative

examples have been provided. We have

shown that our framework covers various

aspects of multi-objective optimization

including the visualization of high-

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol23 Issue 8,2023

ISSN No: 2250-3676 www.ijesat.com Page 211

dimensional spaces and multi-criteria

decision making to finally select a solution

out of the obtained solution set. One

distinguishing feature of our framework

with other existing ones is that we have

provided a few options for various key

aspects of a multi-objective optimization

task, providing standard evolutionary

operators for optimization, standard

performance metrics for evaluating a run,

standard visualization techniques for

showcasing obtained trade-off solutions,

and a few approaches for decision-making.

Most such implementations were

originally suggested and developed by the

second author and his collaborators for

more than 25 years.

REFERENCES

[1] G. Rossum, ‘‘Python reference

manual,’’ CWI, Amsterdam, The

Netherlands, Tech. Rep. 10.5555/869369,

1995. [Online]. Available:

https://dl.acm.org/doi/book/10.5555/86936

9

 [2] M. Bücker, G. Corliss, P. Hovland, U.

Naumann, and B. Norris, Automatic

Differentiation: Applications, Theory, and

Implementations (Lecture Notes in

Computational Science and Engineering).

Berlin, Germany: Springer-Verlag, 2006.

 [3] G. Brandl. (2019). Sphinx

Documentation. [Online]. Available:

https://www.sphinx-doc.org/

[4] A. Pajankar, Python Unit Test

Automation: Practical Techniques for

Python Developers and Testers, 1st ed.

Berkely, CA, USA: Apress, 2017.

 [5] J. J. Durillo and A. J. Nebro, ‘‘JMetal:

A java framework for multiobjective

optimization,’’ Adv. Eng. Softw., vol. 42,

no. 10, pp. 760–771, Oct. 2011. [Online].

Available:

http://www.sciencedirect.com/science/

article/pii/S0965997811001219

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol23 Issue 8,2023

ISSN No: 2250-3676 www.ijesat.com Page 212

https://dl.acm.org/doi/book/10.5555/869369
https://dl.acm.org/doi/book/10.5555/869369

